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ABSTRACT

Characteristics of precipitation estimates for rate and amount from three

global High-resolution precipitation products (HRPPs), four global Climate

Data Records, and four reanalyses are compared here. All data sets consid-

ered have at least daily temporal resolution. Estimates of global precipitation

differ widely from one product to the next, with some differences likely due to

differing goals in producing the estimates. HRPPs are intended to produce the

best instantaneous precipitation estimate locally. Climate data records of pre-

cipitation emphasize homogeneity over instantaneous accuracy. Precipitation

estimates from global reanalyses are dynamically consistent with the large

scale circulation but tend to compare poorly to rain gauge estimates as they

are forecast by the reanalysis system and precipitation is not assimilated. As

expected, variance and the average spread among data sets are highest where

the means are large. Regionally, differences in the means and variances are

as large as the means and variances respectively. Temporal correlation, rain

rate and rain amount distributions, and biases in time evolution are explored

using temporal and spatial averaging. It is shown that differences on annual

time scales and continental regions are around 0.8mm/d, which correspond to

23W m�2. These wide variations in the estimates, even for global averages,

highlight the need for better constrained precipitation products in the future.
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1. Introduction32

Gridded estimates of daily (or higher frequency) global precipitation are becoming more and33

more necessary for applications such as model validation, input for land-surface models, or34

extreme-event characterization. Detailed knowledge about current precipitation distributions is35

also necessary to quantify changes in precipitation estimated by global-warming scenarios, which36

tend to be described as changes in the mean and tails of the distribution. On monthly scales37

global precipitation estimates have been used to estimate the global water cycle (?), study the38

co-variability of precipitation and surface temperature (?), and to assess the imbalance between39

global precipitation and evaporation (?). All of these applications assume that an accurate or at40

least adequate estimate of these distributions is obtainable. For many other applications, higher41

temporal (sub-monthly) and spatial resolution is needed. Extreme precipitation events are usually42

highly localized in space and time, involving temporal scales on the order of minutes to a few43

hours and several kilometers, especially in summer over land. To resolve the more extreme pre-44

cipitation intensity events data on ten minute intervals thus might be needed (?). To accurately45

identify the mean diurnal cycle, hourly time steps are desirable. The highest resolutions of current46

global precipitation estimates are 3 hours and 0.25�. This is marginally adequate to resolve the47

diurnal cycle and mesoscale systems but is still too coarse to resolve individual mesoscale storms.48

For model purposes, where time steps may be on the order of half an hour, hourly data are best.49

Hourly resolution sets a good compromise between what is meaningful for models and useful for50

extremes.51

Gridded rain-gauge based analyses of precipitation are available over the global land areas, with52

the estimates assumed to be representative for a given area. Individual rain-gauge estimates of53

precipitation exist in many locations, but these are point estimates and apply only at the location54
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they were collected. Large land areas on the globe are very sparsely covered with rain gauges, and55

ocean areas are not covered at all. In sparsely sampled areas, interpolation between rain gauge56

locations to obtain a gridded analysis may introduce errors. In addition, rain-gauge estimates are57

thought to underestimate very high rain rates due to under-catch in high-wind or snow conditions58

(e.g. ??). Another issue is that precipitation measurements are usually reported only once or twice59

a day, which affects both rates and totals, because the longer the rain is left in the gauge the greater60

the potential for some of it to evaporate. To resolve the very high rain rates in thunderstorms,61

for example, temporal resolution of hours or even minutes is necessary. Overall, gauge-based62

analyses are likely to be quite accurate in data-dense areas and questionable in data-sparse areas.63

Other available options for global precipitation estimates, that provide higher spatial and temporal64

resolution, are based on satellite data. Global reanalyses offer another way to estimate global65

precipitation with the advantage that all variables are somewhat dynamically consistent. These66

estimates are also available over the oceans.67

There are several important questions users of these data sets need to ask. The most important68

one is obviously, which of these estimates is closest to the truth? There is no clear answer to69

this, even among satellite precipitation data sets. The conclusion of several precipitation inter-70

comparison projects was that no one methodology is superior to the others (?). ? showed for71

regional comparisons, that uncertainty in the ground validation data are larger than the passive72

microwave (PMW) algorithm bias. They also showed that the differences in estimated rain rates73

are mainly due to how the more intense rain rates are calculated and how strict the screen (pre-74

cipitating and dry pixels) is. On monthly timescales for global analyses, ? show that merged75

analysis products, using more than one satellite source and rain gauge adjusted, are superior to76

single source products. Without the adjustment to rain gauges, large biases exist over the southern77

Great Plains in the US for high resolution precipitation products (?). Even rain gauge only data78
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sets have large differences; in the context of drought, using one or another data set can mean an79

observed increase or decrease in drought (?). The main conclusion from these studies is that there80

is no best product, there is only the most appropriate product for a certain purpose. Given that no81

one product is perfect for all circumstances, a question that may be more appropriate to ask by the82

user, and more likely to yield a useful answer, is, which of these should be used for a particular83

application? For example, studies at different locations and different seasons will likely benefit84

from using the product that has been shown to do well under those conditions. If the emphasis is85

on consistency of precipitation with circulation patterns, then reanalysis products combined with86

observed precipitation may be the best choice. In addition, several other issues are not addressed87

in these previous studies. Are there systematic biases among the high-resolution precipitation88

estimates on the global scale?89

In all cases it is important for the user to know how the products differ in their precipitation90

estimates. In order to answer this question it is necessary to first quantify the differences among91

the data sets and the different estimation approaches. Are there biases that are particular to a92

certain approach to precipitation estimation? How do the distributions differ? And, given all the93

different estimates, is there a way to quantify the uncertainty associated with them?94

The aim of this study then, is not to determine which data set is closest to the absolute truth95

since that is impossible, but rather to identify strengths and shortcomings of the data sets, and to96

provide some guidance as to which data sets are likely to perform better in certain situations. We97

are interested in global precipitation data sets with daily or higher resolution. Global products are98

consistent for all areas of the world. This consistency helps in comparing different precipitation99

regimes across the globe, as the differences are not related to different analysis algorithms. Daily100

or higher temporal resolution is better suited for estimating distributions, than monthly resolution.101
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Section 2 introduces the data sets used in this study. Section 3 has the details of the statistics used102

to compare the precipitation estimates and how the distributions are computed. Section 4 evaluates103

the statistics and distributions, mostly on the example of North America, but other continental104

regions are mentioned to highlight stark differences or similarities. Figures for all other continental105

regions are included in the supplementary material. Lastly, section 5 summarizes and discusses106

the implications of the results presented in this study.107

2. Data Sets108

The lowest native resolution of all precipitation data sets under consideration here is daily on a109

1� grid. Therefore, all data sets were interpolated from their original grids to a grid with 1� spatial110

and daily temporal resolution using conservative averaging. This was done to facilitate comparison111

of distributions and variability, to ensure that the precipitation estimates are comparable and to112

minimize biases. As temporal averaging is done to daily resolution, differences in the diurnal113

cycle phase and amplitude will not be resolved; the resolved time scales that will be considered114

are daily to interannual. The seasonal cycle has a large effect on precipitation, which is why all115

analyses are performed for each month of the year separately.116

Our criteria (global data, daily resolution) exclude several well established precipitation es-117

timates from this study, for reasons related to either their temporal resolution or their regional118

coverage. These include PRISM (?), the North American regional reanalysis (?), stage IV radar119

data (?), and Asian Precipitation - Highly Resolved Observational Data Integration Towards Eval-120

uation of Water Resources (APHRODITE, ?), because they are regional products, and the Global121

Precipitation Climatology Centre (GPCC, ?) , GPCP monthly estimates (?), CPC merged analysis122

of precipitation (CMAP, ?) and CRU precipitation (?), because of their monthly resolution.123

6



a. High-resolution precipitation products124

High-resolution precipitation products (HRPPs) aim to provide the best instantaneous precipi-125

tation estimates at high spatial and temporal resolution. Commonly, high-resolution infrared (IR)126

brightness temperatures from geostationary satellites are related to precipitation rates using the127

more accurate passive microwave (PMW) estimates from the polar-orbiting satellites. How these128

measurements are related, how the IR is calibrated, and whether the monthly means are scaled to129

match monthly rain gauge analyses varies between algorithms and constitutes the main sources of130

differences between the estimates; see ? for an overview and an in-depth description of the var-131

ious techniques. In general, PMW gives a more accurate instantaneous estimate of precipitation132

than IR, because of the more direct observation of precipitation. But this accuracy deteriorates for133

longer time averages due to the lower sampling frequency of PMW. The combination of PMW and134

IR measurements includes the different errors inherent in each technique (?).135

The Climate Prediction Center morphing method (CMORPH, ?) estimates rainfall by combining136

IR and PMW measurements. High-quality PMW rainfall estimates are propagated (using linear137

interpolation in time) by motion vectors derived from high frequency IR imagery. CMORPH is138

available from 2003-2013 at 3-hourly intervals on a 0.25� grid from 60�S to 60�N.139

The Tropical Rainfall Measuring Mission (TRMM) 3B42 product, provides 3-hourly precipi-140

tation estimates on a 0.25� grid between 50�S to 50�N and from 1998 to 2013. The microwave-141

calibrated IR rainfall estimates use the same monthly satellite-gauge analysis as the Global Precipi-142

tation Climatology Project (GPCP, see below) to match the monthly totals. TRMM was previously143

determined to have large relative errors at small precipitation rates, however time/area averaging144

significantly reduces the random error (?).145

7



The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-146

works (PERSIANN) algorithm merges high-frequency IR images with low frequency rainfall es-147

timates from the TRMM satellite using artificial neural networks (??). The precipitation estimates148

are based on IR from geostationary satellites, and PMW measurements are used to update the al-149

gorithm parameters. PERSIANN is available from 2001-2013 at 3-hourly intervals on a 0.25� grid150

from 50�S to 50�N.151

b. Climate data records of precipitation152

For climate data records homogeneity is emphasized over instantaneous accuracy. The Climate153

Prediction Center (CPC) rain-gauge (GAUGE) data set is based on quality-controlled station data154

from more than 30000 stations. These data are then interpolated to create analyzed fields of daily155

precipitation with bias correction for orographic effects (?). The global analysis is available daily156

on a 0.5� grid from 1979-2005 (??). The real-time version of the CPC gauge data set (GAUGERT)157

uses about 17000 stations and is available on the same grid at the same time resolution from 2005-158

2013.159

Global Precipitation Climatology Project (GPCP, v1.2) daily, 1� precipitation estimates are com-160

puted based on the threshold-matched precipitation index (TMPI) (?). For the TMPI, IR tempera-161

tures are compared to a threshold, and all cold pixels are given the same conditional precipitation162

rate, with threshold and conditional precipitation rate set locally by month. The monthly means163

are normalized to match the monthly GPCP satellite-gauge precipitation estimate (?), which is164

based on satellite data and rain-gauge analysis from the Global Precipitation Climatology Centre165

(GPCC). The GPCC monthly rain gauge analysis is bias corrected to account for systematic errors166

due to wetting, evaporation, or aerodynamic effects (?).167
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One of the latest climate data records is the Precipitation Estimation from Remotely Sensed168

Information using Artificial Neural Networks - Climate Data Record (PERSICDR, v1r1, ?). This169

is generated using the PERSIANN algorithm, and adjusted using the GPCP monthly product to170

match monthly precipitation rates on a 2.5� grid between the two products. In contrast to the171

HRPP PERSIANN, the PERSICDR model is pretrained on stage IV hourly precipitation data and172

the model parameters are then kept fixed for the full historical record of IR data. PERSICDR is173

available on a 0.25� grid between 50�S to 50�N and from 1983 to present day.174

c. Reanalysis precipitation products175

Another way to estimate global precipitation is through short-term forecasts provided by global176

reanalyses. The underlying models assimilate a wide variety of observations, but in general not177

precipitation measurements or analyses. Precipitation is usually provided by a prior short-range178

forecast, and this inherits the systematic errors of the forecast model. The advantage to reanaly-179

ses is that all variables are somewhat dynamically consistent. However, as precipitation data are180

not typically constrained by the analysis procedure, reanalyzed precipitation is highly model de-181

pendent (?). This is particularly true in the tropics and over continents during the summer, when182

convective precipitation dominates. This leads to the well-known problem with precipitation esti-183

mates from general circulation models (GCMs) of raining too frequently, with an over-abundance184

of light rainfall and too infrequent extreme precipitation (e.g. ??). As global reanalyses are based185

on similar GCMs they tend to have the same short-comings in this respect. One exception is186

the North American Regional Reanalysis (?), which does assimilate precipitation. And there is187

evidence that assimilation of precipitation significantly improves precipitation estimates and the188

atmospheric moisture budget (???).189
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To facilitate comparison of reanalyses with the other precipitation estimates, the reanalyses must190

be be generated at as high resolution as the other estimates. Lower-resolution reanalyses previ-191

ously have been found to have lower rain rates and a smaller range of resolved rain rates overall192

as compared to satellite or gauge based estimates, similarly to operational forecast models (?).193

We obtained similar results when applying our analysis to lower resolution reanalyses. Here we194

consider the most recent global reanalyses products which have a spatial resolution of smaller195

than 1�. They are the European Centre for Medium-Range Weather Forecasting (ECMWF) ERA-196

Interim reanalysis (ERAI ?), the Modern-Era Retrospective Analysis for Research and Applica-197

tions (MERRA ?), the NCEP Climate Forecast System Reanalysis (CFSR ?), and the Japanese198

55-year Reanalysis (JRA55 ?).199

d. Caveat to independence of precipitation estimates200

None of the above precipitation estimates is independent of all the others, for there is a large201

degree of overlap in the source data that goes into the different estimates (Table 1). PERSIANN202

and CMORPH are the only satellite product without any ground validation with gauge data. Both203

TRMM and GPCP use the same algorithm and the same monthly satellite-gauge analysis to con-204

strain their monthly totals (?). The GAUGE and GAUGERT estimates are for non-overlapping205

time periods and use a different total number of stations, but the underlying algorithm is the same.206

Their statistics compare very well even though only about half the number of stations are available207

for the real-time product GAUGERT (17000 compared to 30000 for the retrospective GAUGE).208

3. Methods209

The methods used to evaluate the precipitation estimates include basic statistical quantities such210

as means and variances, and their differences among products at each grid point (Table 2). We also211
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show the mean and variance differences as percentage of the mean and variance respectively to212

compare their relative sizes. In addition we consider temporal averages on time scales of a week,213

a month and a year. Spatial averages are always area averages, taking into account the change in214

grid area with latitude.215

Frequency distributions of precipitation are highly skewed, with the smallest rain rates being the216

most frequent. In general this makes comparing different distributions difficult, because the tails217

tend to be under-sampled. One way to reduce the discrepancy between the number of samples in218

the lower rain rate bins and the higher rain rate bins is to use logarithmic bin sizes that increase with219

rain rate. Of course, in that case care needs to be taken when computing integrals. In addition to220

frequency distributions of precipitation rate we also compare rain amount by rain rate distributions.221

The integral under the curve is equal to the total precipitation amount. These distributions tend222

to be skewed towards lower precipitation rates with the largest amounts occurring at intermediate223

rain rates. For both types of distributions a logarithmic bin size is used. The number of bins is224

100 with a constant logarithmic (to base 10) bin length. Setting the minimum bin to 10�4 and225

the maximum to 10, the bin length then comes out to 4b =
�
log10 10� log10 10�4�/100 = 0.05.226

The edges of the bins are computed according to bi = 10�410i4b, i = 0, ..,100, which results in227

increasing bin sizes with precipitation rate. Rain rates below the minimum (including zero rain228

rates) are counted in the lowest bin.229

Global maps of the spread among precipitation data sets (Table 2) can be used to identify regions230

with more or less variability among the data sets. First the mean seasonal cycle is removed from231

each data set. The spread is then computed as the standard deviation among data sets at each grid232

point and time and averaged for each month of the year.233
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4. Results234

The continental regions used in the analyses are defined as the land areas contained within the235

latitude-longitude areas given in Table ??.236

a. Annual cycle237

A summary of the annual cycle is given in Figs. ?? and ?? in form of its amplitude and phase.238

Differences in the amplitude are large over equatorial Africa and South America, and the Indian239

Monsoon region. Over North America the amplitude of the annual cycle in the midwest of the240

Unites States ranges between 3� 13mm d�1. The phase is defined as the day of the year the241

annual cycle is maximized, and so does not take into account if a location has multiple maxima in242

precipitation during the year. This is potentially an issue in equatorial South America and Africa,243

although overall the timing of the annual maximum in precipitation is captured consistently among244

the estimates. Regions with large discrepancies in timing are northern Africa, parts of Australia245

(both regions where the annual cycle amplitude is very small), and the northwestern United States246

(??).247

b. Differences in means and variances248

Distinctive differences among data sets of large-scale patterns of means and variances can be249

identified. The climatological mean monthly precipitation for July is shown in Fig. ??. Com-250

parison of the mean monthly precipitation across data sets shows large variability (Fig. ??b-d),251

especially in areas like the Intertropical convergence zone (ITCZ). Other regions with large dif-252

ferences in the means are continental areas in the summer hemisphere and the western boundary253

ocean current regions. Because of large spatial gradients in some regions, small variations in254
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the location of climatological features like the ITCZ can lead to large local differences in mean255

precipitation.256

Figures ??c,d and ??c,d show that GPCP mean precipitation exceeds mean precipitation from257

satellite-only products PERSIANN and CMORPH over the oceans, except in regions with intense258

convective precipitation. TRMM and GPCP match well over land, but TRMM commonly has259

higher means over tropical oceans and smaller means over midlatitude ocean areas (Fig. ??b). The260

closest match is between GPCP and PERSICDR monthly means (Fig. ??f), where any differences261

are below 0.075mm d�1. Satellite-only products PERSIANN and CMORPH have higher means262

over summertime continental regions than the gauge corrected estimates. Over land the main bias263

for gauge corrected precipitation estimates is due to the bias in the rain gauge analysis used. This264

is visible in the differences between GPCP monthly means and GAUGE monthly means (Figs. ??e265

and ??e), where the rain gauge analysis that contributes to GPCP is bias corrected for losses due266

to wetting, evaporation, or aerodynamic effects, and the CPC GAUGE analysis is corrected for267

orographic effects. Comparing the July estimates to January it becomes clear that CMORPH and268

PERSIANN tend to underestimate winter precipitation over continents and overestimate summer269

precipitation when compared to GPCP. GAUGE estimates are biased low compared to GPCP, and270

TRMM exceeds GPCP in regions of vigorous convection.271

Percentage differences of the monthly means (Fig. ??) show clearly that the differences in the272

means are often as large as the means. This is especially true in areas with small mean values273

like the subtropical dry zones, where small differences translate into large percentage differences.274

Depending on the data set under consideration, this can also be the case in regions with large mean275

precipitation and large variability like the continental US in the summer and the edge of the ITCZ276

(e.g. GPCP and CMORPH (Fig. ??c)).277
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Monthly mean daily precipitation variance is large where mean precipitation is large (Figs. ??a278

and ??a). The largest variances are in areas with highly variable convective precipitation such as279

the ITCZ, the Indian Ocean, and the Indian Monsoon region. CMORPH has larger variance than280

all data sets except TRMM (Fig. ??b,c), and differences in variances are as large as the variance281

for most areas of the globe (not shown). This holds even for areas with large variability, like282

the ITCZ. That magnitudes of spread and mean should correlate is to be expected for a positive283

definite quantity like precipitation, the magnitude of the difference in variance among data sets284

however is notable. Both rain gauge data sets show smaller variance than GPCP (Fig. ??e). This285

is likely related to the fact that under catch for rain gauges tends to be more of an issue at higher286

rain rates, thus decreasing the variance. PERSICDR variance is smaller than GPCP variance over287

land, but exceeds GPCP variance over the ocean. Note, however, that differences in variance are288

smaller for PERSICDR and GPCP than for any other data set Fig. ??f and ??f). While CMORPH289

has the highest variance for most regions, Figs. ??c and ??c show that GPCP variance is higher in290

winter hemisphere. This issue will be discussed more in the following sections.291

c. Time Series292

Time series at the continental scale are shown for North America, where there is a relatively293

dense observing network and so the potential for constraining estimates is high. Time series av-294

eraged over North America are also a good example in that they illustrate many of the issues also295

observed in other regions. Other regions (Table ??) are mentioned where results are notable, but296

results are not shown. Figures for all other regions are included in the supplementary material.297

Table ?? also includes the amplitude and phase of the mean seasonal cycle averaged over each298

continental region. The minimum and maximum amplitude estimated by the different products in299

general differ by a factor of 1.5� 3. And the timing of the seasonal cycle is estimated within 30300
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days for Asia, Australia and the maritime continent. For North America and Europe the estimates301

differ by 60� 80 days. Note that the outliers for the timing are not necessarily the reanalyses.302

For North America it is GAUGERT and for Europe it is CMORPH that place the maximum of the303

annual cycle much earlier in the year than the other estimates. South America and Africa have304

two maxima in the seasonal cycle, and there is disagreement among data sets on which maximum305

dominates.306

The temporal evolution of global land-averaged precipitation rates on annual, monthly and307

weekly timescales are shown in Fig. ??. The interannual variability that can be seen in the annual308

means is somewhat consistent among most data sets, although there appears to be an offset of309

0.5� 1mm d�1 between the estimates (Fig. ??a), this decreases to 0.3mm d�1 when anomalies310

from the seasonal cycle are considered (not shown). The outliers for annual averages are PER-311

SIANN and to a lesser degree CMORPH. CFSR appears to have a positive trend from 2001 to312

2010 not seen in the other estimates; this trend is mostly due to trends over South America and313

Africa (not shown) and can be related to the changing observing system (?). Previous studies have314

shown that precipitation from reanalyses that assimilate moisture from satellite observations are315

strongly affected by changes in the observing system and result in spurious trends in the precipita-316

tion estimates (?). PERSIANN has anomalously high rain rates from late 2006 to early 2007 and317

anomalously low rate in late 2005 and early 2008 (Fig. ??b). Over the global ocean the differences318

among annual averages are larger, up to 2mm d�1, and the reanalyses have a small but significant319

upward trend not seen in the GPCP, PERSICDR and TRMM estimates (not shown). PERSIANN320

in contrast has a negative trend over the ocean.321

The timing of the seasonal cycle over North America is captured more or less consistently by all322

estimates (Fig. ??b), but the amplitude is not. CMORPH and PERSIANN underestimate winter323

precipitation rates relative to other analyses by up to 1mm d�1 on monthly time scales, while ERAI324
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under-estimates summer precipitation rates. On weekly time scales the differences can be as large325

as 3mm d�1 in the winter, with CMORPH and PERSIANN estimating < 0.5mm d�1 and all other326

estimates averaging between 2.5� 3mm d�1 (Fig. ??c). This is a very large range for an area of327

this size and a weekly average. This is a known issue with CMORPH and PERSIANN. Several328

studies have shown that wintertime precipitation is severely underestimated in these products for329

different regions in the northern midlatitudes (???). Relative differences over North America in330

the summer are of the same order as over the maritime continent, even though total amounts are331

much larger over the maritime continent.332

Correlations of the time series of continental mean precipitation anomalies reveal large positive333

correlations on annual, monthly and daily time scales for some data sets, TRMM, PERSICDR and334

GPCP in particular (Table ??). For other data sets the correlations are not significantly different335

from zero, even for annual averages (GPCP and PERSIANN or CMORPH), indicating potential336

long-term differences in the continental scale water budgets associated with the different data337

sets that would need to be balanced by evaporation or runoff. Results for reanalyses are mixed.338

Correlations on annual timescales are < 0.3 for all reanalyses over North America, but > 0.9 over339

Europe, the maritime contitent and Australia. Meanwhile, correlations are fairly high for both340

monthly and daily timescales.341

The low correlations of large scale (continental to global) annual averages of precipitation esti-342

mates indicate that the estimates differ in their interannual variability. Imbalances on these scales343

in estimates of an important component of the global water cycle affect our ability to close the344

budget (??). Global land differences on annual time scales are about 0.8mm d�1 for the observa-345

tional estimates. This translates to differences of up to 23.2W m�2, which is very large compared346

to the global land latent heat flux of 38.5W m�2 estimated by ?. Including the reanalyses increases347

the offset to 1mm d�1.348
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d. Distributions349

Fig. ?? shows the area-averaged seasonal distributions for North America. The general behavior350

of these distributions is very similar for the other continental areas. The log-log plot shows curves351

with two distinct slopes, positive for low rain rates and negative for higher rain rates. The transition352

between these slopes is more abrupt in the summer and more gradual in the winter months for353

North America. For Africa and the maritime continent, the transition is abrupt for all months (not354

shown). This relationship appears to hold for all continental areas during the summer months355

when precipitation tends to be in a more convective regime, which leads us to speculate that the356

manner of transition between slopes could be related to the dominant precipitation regime (large-357

scale vs. convective). While the location of where the slopes in the log-log plot change is around358

0.5mm h�1 for all seasons and regions, the slopes are very variable between months, data sets and359

regions.360

At the lowest rain rates, JRA55, MERRA and CMORPH, have a positive bias, with lower rain361

rates being more common than in other reanalyses or the precipitation data sets. This is consistent362

with all other continental areas except the maritime continent, where GAUGERT and CMORPH363

have a positive bias at low rain rates and ERAI and MERRA have a low bias. The distributions over364

the maritime continent have the largest spread among the data sets. The bulk of the distribution365

is between 0.01� 1mm h�1, with the peak in the distribution shifting between 0.015mm h�1 in366

the winter and 0.5mm h�1 in the summer for North America (Fig. ??c). In general, reanalyses,367

and MERRA in particular, dominate the distribution at these rates. For midlatitude continental368

regions, CMORPH, and PERSIANN to a lesser degree, are a lot less likely than other products369

to have precipitation occur at the intermediate rates 0.01�1mm h�1. This is likely related to the370

fact that these are satellite-only products that have issues with detecting precipitation over snow-371
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covered ground. Fig. ?? examines the differences in the tails of the precipitation distributions.372

Overall reanalyses tend to not produce very high rain rates. This could be because of the grid373

area vs. point estimate, the convective parameterizations used, or the relatively large grid size. For374

North America in the winter TRMM has the highest rain rates and highest probability of high rates375

occurring (Fig. ??a). In the summer (Fig. ??c) the satellite only estimates dominate at the highest376

rain rates. For other regions ERAI dominates the tails in the winter in South America and all year377

in Africa (not shown).378

The satellite-only products, CMORPH and PERSIANN, tend to accentuate the tail of the distri-379

bution during summertime convective precipitation regimes. During months when precipitation is380

dominated by synoptic systems or when the ground is covered in snow (e.g. Europe in the win-381

ter months) the tails of the distributions of CMORPH and PERSIANN are even lower than the382

reanalyses.383

A different way to compare the data sets is through the distribution of the rain amount by rain384

rate (Fig. ??). Precipitation amount distributions tend to be skewed in a logarithmic plot, with a385

long tail towards lower rain rates. Rain rates below 0.01mm h�1 are very common, but the actual386

rain amount from precipitation at these rates does not add up to much. During the winter months387

(Fig. ??a), the distributions for CMORPH and PERSIANN are much flatter, and the mean total388

precipitation amount of CMORPH in DJF is 14mm, whereas it is 55mm for GPCP and 68mm389

for CFSR. That is a difference of almost 500% for the mean monthly total estimate. Excluding390

CFSR which has been shown to overestimate moisture transport from ocean to land and where391

at least some of the precipitation over land is due to the analysis increment (?), there is still a392

factor of 4 difference. On the other hand, in summer (Fig. ??c), CMORPH and PERSIANN have393

many high rain rate events compared to the other estimates, and their monthly mean totals are394

correspondingly higher than the other estimates. One thing to note about the reanalysis estimates395
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is that the rain amount distributions tend to be narrower than the satellite and rain gauge estimates.396

This is most obvious for ERAI (Fig. ??c) and becomes more severe for reanalyses with a coarser397

spatial resolution (not shown), highlighting the fact that reanalyses only resolve a narrow band of398

rain rates.399

5. Summary and Discussion400

A comparison of several global precipitation estimates and reanalyses was performed on a range401

of temporal and spatial scales. Only data sets with daily or higher temporal resolution were consid-402

ered. We found that while patterns of means and variance were largely consistent among data sets,403

the differences in means and variances between the data sets were often as large as the analyzed404

means and variances themselves.405

Correlations among the precipitation estimates averaged over continental areas varied signifi-406

cantly. GPCP, TRMM and PERSICDR were very highly correlated. This was by construction on407

monthly and annual time scales, since all three data sets are bias corrected to monthly satellite -408

rain gauge analyses, but also held for daily averages. Correlations of the satellite-only products,409

PERSIANN and CMORPH, with GPCP were not significantly different from zero even for annual410

averages. Reanalyses had high correlations with GPCP on monthly time scales, but the results411

were mixed for annual averages. Correlations between reanalyses and GPCP were found to be412

larger than 0.9 over Europe, the maritime continent and Australia, but less than 0.3 over North413

America. This is noteworthy, because North America is one of the best observed regions in the414

world where the potential for constraining reanalyses with observations is high.415

Distributions of precipitation rates and amounts showed that satellite-only estimates PERSIANN416

and CMORPH underestimated wintertime precipitation in midlatitudes, while overestimating sum-417

mertime precipitation in midlatitudes. Reanalyses tended to precipitate over too narrow of a range418

19



of rain rates when compared to observational estimates, although some of the reanalyses (JRA55419

and MERRA) estimate mean monthly totals in the same range as PERSIANN and CMORPH in the420

summer. Reanalyses tended to precipitate over too narrow of a range of rain rates when compared421

to observational estimates, although mean monthly totals of JRA55 and MERRA in the summer422

were in the same range as PERSIANN and CMORPH. The difference (at least for North America)423

is that the bulk of the rain in the satellite-only estimates PERSIANN and CMORPH comes from424

high rain rates > 2mm h�1, while JRA55 overestimation occurred at rain rates around 0.8mm h�1
425

and for MERRA at around 0.4mm h�1.426

Average spread among data sets was computed for each grid point, and is defined as the average427

of the standard deviation of anomalies from the seasonal cycle. Spread among data sets differed428

between reanalyses and satellite estimates (Fig. ??). Spread among reanalyses was found to be429

larger in the tropics and smaller in midlatitudes when compared to the spread among satellite esti-430

mates. This is likely related to precipitation in midlatitudes being driven mainly by the large-scale431

flow, while convective precipitation dominates in the tropics. Reanalyses do well in representing432

mid-latitude large-scale circulation patterns and this results in higher consistency across reanaly-433

ses in the mid-latitudes. In the tropics convective parameterizations were likely responsible for the434

bulk of the precipitation in reanalyses; these parameterizations differed widely among reanalyses435

and so did the results.436

Systematic differences were found in the global precipitation estimates considered in this study.437

Users of these estimates need to be aware of these biases and their use as a ground truth should438

be limited to regimes, seasons, or regions the products have been shown to perform well for. For439

example, CMORPH and PERSIANN, designed to represent the instantaneous variability in pre-440

cipitation, performed well in the tropics, but overestimated summertime convective precipitation441

and underestimated wintertime precipitation in midlatitudes. This suggests that the performance442
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of CMORPH or PERSIANN in midlatitude regions always needs to be assessed for the region and443

season of interest prior to using these estimates. Reanalyses reflect the systematic errors of the444

global circulation models used to provide the forecast background. There is a clear bias of the445

reanalyses’ annual and monthly means compared to the observational estimates. However, while446

we showed here that large scale (continental to global) annual averages of precipitation estimates447

differ in their interannual variability, variability estimated by reanalyses on monthly timescales448

tends to be consistent with the observational estimates (as seen from the high correlations). This449

suggests that studies interested mainly in the variability of precipitation may have a more reliable450

foundation in using reanalyses than studies investigating the energy and water budgets.451

In summary, any study using precipitation estimates based on observations or reanalyses should452

take into account the uncertainty associated with the precipitation estimate. There is no one global453

precipitation product that is better than all the others for all applications. The most suitable product454

changes with intended application, location and season. Therefore, care needs to be taken when455

choosing a product for a specific application, to ensure that the product has the capability to yield456

useful results. Given the uncertainty inherent in any precipitation estimate it is an asset to have sev-457

eral products based on different approaches available to compare and estimate that uncertainty. In458

some ways precipitation estimates from satellite and reanalyses have the opposite problem. Satel-459

lite estimates perform well in regions and seasons with convective precipitation, while reanalyses460

are better at large scale precipitation in the northern midlatitudes. Precipitation estimates that in-461

corporate both satellite and ground-based measurements such as GPCP, and indirectly TRMM and462

PERSICDR, tend to lie in between the other estimates both in terms of the distributions and the463

average rain rates. Incorporating ground radar in precipitation estimates where available can be464

expected to have a positive impact on the accuracy of the estimates. Including data from diverse465

sources (multiple satellites and retrieval channels, rain gauge, radar) appears to help with reduc-466
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ing errors and enhances reliability. Extending the rain gauge network to data sparse regions, in467

particular over oceans, will likely have a large impact on constraining at least global mean pre-468

cipitation estimates. Unfortunately, this is impractical and costly. A more practical approach may469

be to combine precipitation estimates from several different data sources based on their respective470

strengths.471
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TABLE 1. List of precipitation estimate data sets. Sources are geostationary infrared (Geo-IR), microwave

(MW), gauges, or reanalyses.

491

492

Name Source Temporal resolution Spatial resolution Reference

TRMM Geo-IR; MW from SSM/I,TMI, 1998 - 2012, 49�S - 49�N ?

AMSU, AMSR; gauges 3 hourly 0.25� ?

CMORPH Geo-IR; MW from SSM/I,TMI, 2003 - 2013, 59�S - 59�N ?

AMSU, AMSR; 3 hourly 0.25� ?

PERSIANN Geo-IR; MW from TMI 2001 - 2013, 59�S - 59�N ??

3hourly 0.25� ?

PERSICDR Geo-IR; MW from TMI (for training) 1983 - 2013, 60�S - 60�N ??

SSM/I; IR; gauges daily 0.25� ?

GPCP Geo-IR; AVHRR low-earth-orbit IR, 1997 - 2013, global, 1� ?

SSM/I; gauges; daily

TOVS (poleward of 40S-40N)

GAUGE gauges 1979 - 2005, daily global land, 0.5� ??

GAUGERT gauges 2006 - 2013, daily global land, 0.5� ??

JRA55 Reanalysis 1979 - 2013, global, gaussian 0.5625� ?

MERRA Reanalysis 1979 - 2013 global, 0.5� x 2/3� ?

CFSR Reanalysis 1979 - 2010 global, 0.5� ?

ERAI Reanalysis 1979 - 2013 global, 0.75� ?
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TABLE 2. Description of the metrics used in the analysis. P(x,y,d,m,yr) is precipitation at longitude x,

latitude y, day d, month m, and year yr. Nm is the total number of days in month m, m = 1, ...,12. NA is the

number of grid points in region A with (xi,y j) 2 A. w j are the weights that account for changing area of the grid

box with latitude. P1, ...,PNd are the different data sets, with Nd the total number of data sets. M is the mean of

all the precipitation data sets.

493

494

495

496

497

Metric

Monthly mean P̄(x,y,m) = 1
Nm ÂN

yr=1 ÂNmy
k=1 P(x,y,dk,m,yr)

Monthly variance s2(x,y,m) = 1
Nm ÂN

yr=1 ÂNmy
k=1(P(x,y,dk,m,yr)� P̄(x,y,m))2

Difference D(x,y,m) = P̄(x,y,m)� Q̄(x,y,m)

Percentage difference D(x,y,m) = P̄(x,y,m)�Q̄(x,y,m)
P̄(x,y,m)

⇤100

Spatial average PA(d,m,yr) = 1
NA

ÂNxA
i=1 Â

NyA
j=1 w jP(xi,y j,d,m,yr)

Spread among data sets sP(x,y) = 1
Nt ÂNt

k=1

q
1

Nd
ÂNd

d=1(Pd(x,y, tk)�M(x,y, tk))2
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TABLE 3. Description of continental regions used in the analysis. Only points over land inside the domains

are used. Also shown are the amplitude (mm d�1) of the area averaged mean annual cycle for 2006-2012 and

the phase (the day of the year the maximum occurs). These are given for all data sets in the order (TRMM,

GPCP, CMORPH, PERSIANN, PERSICDR, GAUGERT, JRA55, MERRA, CFSR, ERAI). The minimum and

maximum are highlighted in bold.

498

499

500

501

502

Region lon-lat Amplitude Phase

North America 165�W - 50�W (1.49,1.18,1.25,1.2,1.18, (270,274,257,251,274,

15�N - 49�N 1.42,1.5,1.54,1.37,1.2) 188,265,256,267,270)

South America 90�W - 30�W (1.35,1.29,1.43,1.98,1.3, (74,71,315,306,69,

49�S - 15�N 3.45,1.32,1.2,1.7,1.12) 54,48,47,327,338)

Europe 15�W - 50�E (1.57,1.52,0.66,0.63,1.49, (311,329,285,301,332,

30�N - 49�N 0.84,1.3,0.91,1.65,1.08) 314,316,328,347,322)

Africa 20�W - 50�E (0.67,0.55,0.78,0.91,0.58, (98,85,108,101,87,

35�S - 30�N 0.94,0.77,0.87,0.71,0.78) 227,98,103,240,95)

Asia 50�E - 150�E (4.03,3.75,3.54,3.31,3.83, (200,200,188,195,199,

5�N - 49�N 3.1,5.1,4.48,4.44,3.39) 203,201,209,201,205)

Maritime Continent 90�E - 165�E (3.22,2.98,3.37,4.44,2.98, (363,1,363,365,1,

10�S - 5�N 4.23,4.21,3.09,3.53,3.19) 351,363,2,14,366)

Australia 110�E - 155�E (3.27,2.89,3.3,3.96,2.95, (29,36,22,21,35,

49�S - 10�S 3.21,3.69,3.09,2.49,2.18) 37,28,28,21,37)
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TABLE 4. Correlations between GPCP and all other data sets for annual, monthly and daily mean time series.

Correlations are computed for common time period 2003-2010 with the annual cycle removed. Correlations

significant at the 90% level are bold.

503

504

505

TRMM CMORPH PERSIANN PERSICDR JRA55 MERRA CFSR ERAI

Annual

North America 0.84 0.67 0.05 0.97 0.13 0.28 -0.10 0.24

South America 0.99 -0.16 -0.27 1.00 0.83 0.62 0.48 0.81

Europe 0.96 0.02 -0.29 0.99 0.94 0.93 0.91 0.92

Africa 0.98 -0.05 0.71 1.00 0.62 0.81 0.37 0.59

Asia 0.99 0.04 0.32 1.00 0.77 0.77 0.47 0.64

maritime continent 0.99 0.7 0.66 1.00 0.94 0.91 0.96 0.95

Australia 0.99 0.94 0.32 1.00 0.94 0.90 0.99 0.90

Monthly

North America 0.98 0.56 0.38 0.98 0.88 0.87 0.84 0.84

South America 0.99 0.27 0.14 0.98 0.80 0.66 0.54 0.70

Europe 0.96 0.39 0.16 0.99 0.95 0.95 0.93 0.95

Africa 0.98 0.24 0.47 1.00 0.63 0.67 0.52 0.65

Asia 0.98 0.26 0.28 0.99 0.84 0.81 0.70 0.82

maritime continent 0.99 0.86 0.76 1.00 0.96 0.96 0.96 0.96

Australia 0.99 0.88 0.57 1.00 0.88 0.91 0.93 0.85

Daily

North America 0.78 0.68 0.01 0.91 0.71 0.57 0.68 0.66

South America 0.86 0.78 -0.00 0.90 0.72 0.63 0.63 0.65

Europe 0.80 0.55 0.01 0.89 0.67 0.62 0.66 0.64

Africa 0.88 0.78 -0.05 0.96 0.73 0.63 0.54 0.65

Asia 0.86 0.79 -0.06 0.96 0.81 0.66 0.77 0.75

maritime continent 0.89 0.86 0.01 0.97 0.84 0.77 0.83 0.82

Australia 0.92 0.87 -0.03 0.99 0.80 0.76 0.80 0.76
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FIG. 1. Annual cycle amplitude in mm d�1. The annual cycle is computed as the first 4 harmonics of the mean

daily seasonal cycle from 2006�2012. The amplitude is the difference between the minimum and maximum of

the annual cycle.
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FIG. 2. Annual cycle phase in day of year. The annual cycle is computed as the first 4 harmonics of the mean

daily seasonal cycle from 2006� 2012. The phase is the day of the year the maximum of the annual cycle is

achieved.
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FIG. 3. Monthly long term means of precipitation for July. a) mean for GPCP. b)-f) the difference between

GPCP mean and the respective data set mean for the period is indicated in shading, contours show the mean

monthly precipitation for the respective data set. Contour levels go from 0 to 0.4 by 0.1mm h�1.
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FIG. 4. Same as in Fig. ??, but for January.
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FIG. 5. Monthly long term means of precipitation for July. a) mean for GPCP. b)-f) the percentage difference

between GPCP mean and the respective data set mean for the period is indicated in shading, contours show the

mean monthly precipitation for the respective data set. Contour levels as in Fig. ??.
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FIG. 6. Monthly mean variance of precipitation for July. a) mean variance for GPCP. b)-f) the difference

between the GPCP mean variance and the respective data set mean variance for the period is indicated in shad-

ing, contours show the mean monthly precipitation variance for the respective data set. Contour levels are

(0.001,0.002,0.005,0.01,0.1,1,2,10).
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FIG. 7. Same as in Fig. ??, but for January.
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FIG. 8. Time series of rain rates averaged over global land area between 49�N and 49�S for a) annual means,

b) monthly means, and c) weekly means.
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FIG. 9. Time series of rain rates averaged over North America land area between 15� 49�N for a) annual

means, b) monthly means, and c) weekly means.
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FIG. 10. Distribution of precipitation rate over land area for North America (15�N - 49�N, 195�E - 310�E).

Panels a)-d) show the climatological distribution for all seasons for 2006 - 2012. Precipitation rates are binned

with logarithmic bin sizes to account for more frequent rain events at low rain rates. The x axis is plotted on a

log-scale to compare the bulk of the distribution, not the tails. The black line shows the size of the bin at each

precipitation rate. Distributions are computed for each month and grid point separately and then averaged over

area and season.

527

528

529

530

531

532

38



FIG. 11. Distribution of precipitation rate over land area for North America (15�N - 49�N, 195�E - 310�E).

As in Fig. ??, except that the x axis is plotted on a linear scale to facilitate comparison of the tails of the

distributions.
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FIG. 12. Distribution of precipitation amount by precipitation rate over land area for North America (15�N

- 49�N, the same area as is used in Fig. ??). Panels a)-d) show the precipitation amount distribution for all

seasons for 2006 - 2012. The average is computed over the years 2006 - 2012. Insets show average monthly

totals during each season for the different estimates.
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FIG. 13. Spread among precipitation estimates (computed as the mean standard deviation among data sets) for

2006-2010. Top panel: spread among precipitation data sets (including reanalyses). Bottom panel: difference

in spread among observational precipitation data sets and spread among reanalyses. The mean seasonal cycle is

removed from daily data prior to computing the spread.
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